sâmbătă, 5 octombrie 2019

Eşecul educaţiei matematice


Recunoscută ca unealtă uneori utilă, matematica era încă departe de a fi şi un fapt de cultură. Ciocanul este şi el o unealtă utilă; devine, prin aceasta, cultură? Educaţia primită în şcoală şi, uneori, şi cea de la facultate nu prea lasă să se vadă că în matematică există şi idei, istorie, conflicte, interacţiuni cu alte discipline, dileme privind formarea conceptelor alegerea problemelor. Din variatele moduri de gândire matematică (inductivă, deductivă, abductivă, triadică, binară, analogică, metaforică, ipotetică, infinită, combinatorică, probabilistă, recursivă, topologică, algoritmică, imaginativă etc.), înzestrate cu puterea de a funcţiona şi în afara matematicii, practic având o rază universală de acţiune, şcoala nu se raportează decât la deducţie şi la combinare, uitând că modalitatea deductivă este numai haina în care matematica se prezintă în lume, nu şi substanţa ei. Metabolismul matematicii cu celelalte discipline şcolare este foarte slab. Aşa se ajunge la situaţia actuală, în care elevi şi părinţi protestează împotriva prezenţei matematicii în programele şcolare ale unor elevi care nu-şi propun să devină matematicieni. Intelectualii ajunşi la vârsta evocărilor nostalgice au rareori amintiri semnificative despre orele de matematică. Dacă acceptăm drept cultură ceea ce îţi rămâne după ce ai uitat tot, atunci trebuie să recunoaştem o realitate crudă: cei mai mulţi oameni nu se aleg aproape cu nimic din matematica şcolară. Destui rămân marcaţi pe viaţă de spaima examenelor de matematică. Dar dacă mergem la sursa acestei situaţii, atunci vom identifica o complicitate, e drept, neintenţionată, între matematicieni, factorii de putere din societate şi birocraţia învăţământului. Este educaţia matematică, prin natura ei, destinată unei elite? Sunt mulţi cei care dau un răspuns afirmativ acestei întrebări. Nu mă număr printre ei. Fapt este că se ajunge la ceea ce francezii numesc “mathématiques, récettes de cuisine” iar americanii, în mod similar, “cook book mathematics”. Din această “monstruoasă coaliţie” rezultă caricatura de educaţie matematică pe care încercăm s-o depăşim.

Este matematica numai un limbaj?



Limbajul este partea cea mai vizibilă a matematicii, partea care o trădează, stârnind admiraţia unora şi repulsia altora. Rareori se întâmplă ca matematica să fie privită cu indiferenţă; atitudinea neutră faţă de ea este mult mai puţin frecventă decât atitudinea extremă, într-un sens sau altul. Datele de care dispunem arată că detractorii sunt incomparabil mai mulţi decât admiratorii. Anchetele sociologice, semnalele din mass media, declaraţiile elevilor şi profesorilor confirmă antipatia celor mai mulţi pentru formule matematice, pentru ecuaţii, pentru calcule. Uşurinţa de a recunoaşte jargonul matematicii contrastează cu dificultatea de a defini matematica, dificultate cu nimic inferioară celeia privind definirea poeziei sau a filozofiei. Putem însă identifica diferite ipostaze, diferite aspecte ale matematicii:
a)  Domeniu de cunoaştere şi cercetare;
b) Fenomen de cultură;
c)  Ştiinţă;
d) Artă;
e)  Unealtă utilă în anumite situaţii;
f ) Limbaj;
g)  Mod de gândire;
h) Catalizator al unor transferuri de idei, metode şi rezultate;
i)  Disciplină predată în şcoli şi universităţi;
j)  Fenomen social;
k) Joc;
m) Modă;
n) Mijloc de intimidare şi chiar de terorizare;
o) Formă de snobism;
p) Posibilă formă de patologie;
q) Mod de a înţelege lumea;
r)  Mod de viaţă;
s)  Mod de a înţelege propria noastră minte;
t)  Parte a vieţii noastre spirituale;
u) Filozofie.
Ordinea nu este după importanţă. Lista este deschisă.

Fiecare dintre aspectele de mai sus comportă o întreagă discuţie. Îngrijorător este faptul că aspectul i, al matematicii ca disciplină de învăţământ, este aproape în întregime confiscat, la nivel şcolar, de aspectul e, care vizează partea instrumentală a matematicii, iar la nivel universitar apar, în plus, aspectele a (cunoaştere şi cercetare), c (ştiinţă) şi f (limbaj). Dar chiar şi acestea sunt de obicei considerabil sărăcite; de exemplu, rareori se întâmplă ca predarea matematicii să dezvăluie întreaga bogăţie a aspectelor de limbaj, aşa cum apar ele în multiplicitatea de componente şi de funcţii pe care le-am discutat anterior, în interacţiunea componentei naturale cu cea artificială, a secvenţialului cu polidimensionalul, a discretului cu continuul. Desigur, în măsura în care participanţii la procesul didactic sunt de o calitate superioară, pot apărea şi celelalte aspecte. Fapt este că manualele standard după care matematica este predată şi învăţată şi, mai ales, criteriile după care asimilarea ei este evaluată o transformă într-o palidă imagine a ceea ce este ea în realitate.

Matematica, tragedia şi comedia, la vechii greci



Tragedia se asociază cu fenomenele de hybris şi nemesis. Hybris-ul este eroarea tragică, ce-l duce pe erou la moarte, după ce a ignorat avertismentul zeilor. Pentru Scott Buchanan (Poetry and Mathematics, The John Day Company, New York, 1929, p.175-197), hybris-ul este atitudinea de aroganţă sau de insolenţă a unei naturi oarbe. Nemesis-ul este rezultatul acestei aroganţe: faptele se răzbună pe cel care le-a ignorat. Dar un personaj tragic trebuie nu numai să păcătuiască prin hybris, ci şi să aibă darul ironiei. “Tragedia procedează prin analogie şi prin substituţie omogenă în gândirea raţională a eroului. Evenimentele sunt pregătite, controlate şi interpretate, în aşa fel încât să fie în concordanţă cu ipoteza. Are loc o dezvoltare care tinde spre integrare şi generalitate”.
În matematică, lucrurile decurg în mod asemănător. Comportamentul unei funcţii este tatonat prin observarea valorilor funcţiei atunci când se dau anumite valori particulare argumentului. Grecii foloseau acest procedeu pentru a identifica ceea ce ulterior avea să se numească “valorile limită ale funcţiei”; pe această cale, ei rezolvau unele ecuaţii. O atare metodă avea să capete o formă riguroasă abia cu dezvoltarea calculului diferenţial, mai precis, prin noţiunea de dezvoltare în serie Taylor a unei funcţii, cu ajutorul derivatelor ei succesive.
In cazul comediei, situaţia este diferită. Îl cităm pe Scott Buchanan: “Aici se procedează prin variaţie foarte largă şi prin substituţie eterogenă. Fiecare schimbare de direcţie a acţiunii marchează descoperirea unei inconsistenţe, a unui plan care nu funcţionează, a unei situaţii paradoxale. Şi aici avem o dezvoltare, dar în faza de discriminare a capacităţii de a opera distincţii. Eroul unei comedii sau este capabil de a sesiza orice glumă, orice vorbă de spirit, sau nu-i în stare să înţeleagă niciuna. În acest fel, toate ideile pot avea o şansă egală de conflict sau de purificare. Comedia de moravuri se bazează pe substituţia de idei”.

Teatralitatea limbajului matematic



Cuvântul teorema are, după etimologia sa greacă, semnificaţia de spectacol. După exemplele date mai sus, înţelegem că drumul spre o teoremă poate fi într-adevăr un spectacol. Acest drum abundă în capcane şi este nevoie de multe ori de efortul câtorva generaţii de temerari care să le înfrunte, pentru a se ajunge la un rezultat; alteori nici câteva generaţii nu sunt suficiente. Contrastul dintre caracterul foarte elementar al unor enunţuri, cum ar fi conjectura lui Goldbach (orice număr par superior lui 2 este suma a două numere prime), şi dificultatea de a le demonstra sau infirma, chiar atunci când se pun în mişcare rezultate şi instrumente dintre cele mai fine, îi poate scandaliza pe matematicieni, dar, in acelaşi timp, îi stimulează şi îi ambiţionează în a-şi multiplica eforturile în direcţia respectivă.
În cartea lor What is Mathematics?(Oxford University Press, London, 1941-1946), Richard Courant şi Herbert Robbins se referă la natura teatrală a analizei matematice. În definirea noţiunilor de bază, ca limita unui şir, convergenţa sa, limita, continuitatea, derivabilitatea şi integrabilitatea unei funcţii etc., întâlnim mereu acelaşi scenariu: două personaje, A şi B, primul punându-l mereu la încercare pe al doilea. În cazul convergenţei şirurilor, A propune o valoare strict pozitivă a lui epsilon iar B trebuie să stabilească dacă există un număr natural N astfel încât, pentru m şi n mai mari decât N, o anumită inegalitate, incluzând pe epsilon, pe m şi pe n, este satisfăcută. Însă B trebuie să facă faţă acestui test oricare ar fi valoarea strict pozitivă a lui epsilon; nu e, ca în basmul popular, unde eroul trebuie sa facă faţă, de obicei, la trei încercări.

Narativitate şi dramatism în demonstraţia matematică


Dimensiunea narativă a limbajului matematic este vizibilă în itinerarele de cursă lungă, de tipul demonstraţiilor maratonice care au condus la validarea teoremei celor patru culori, a teoremei lui Fermat, a conjecturii lui Kepler etc. André Gide compara romanul cu o teoremă, dar teorema se poate afla uneori la capătul unei aventuri în care apar momente cu adevărat dramatice. De exemplu, teorema de clasificare a grupurilor simple finite, cu sute de autori, s-a aflat într-o astfel de situaţie atunci când, în urmă cu peste zece ani, murise singurul care ştia cum să articuleze într-un întreg rezultatele parţiale ale diverşilor autori. Demonstraţiile cu ajutorul programelor de calculator ridică probleme delicate, privind controlul acestor programe. Imposibilitatea de a obţine certitudinea adevărului anumitor teoreme este de un dramatism pe care timp de două mii de ani nimeni nu l-a crezut posibil. Semnificativ din acest punct de vedere este textul cu care Redacţia revistei Annals of Mathematics prefaţează publicarea demonstraţiei conjecturii lui Kepler, publicare aprobată în ciuda faptului că referenţii nu au putut ajunge la validarea cu certitudine a demonstraţiei conjecturii respective.
Urmărirea greşelilor comise în încercările de demonstrare a unei ipoteze importante ne permite să înţelegem cum anume o greşeală poate deveni o sursă de creativitate. Şirul de greşeli comise în încercările succesive de demonstrare a teoremei lui Fermat este unul dintre cele mai frapante exemple de acest fel. Chiar autorul demonstraţiei acestei teoreme a comis, în prima sa tentativă, o greşeală, pe care a îndepărtat-o ulterior. O greşeală locală a lui Lebesgue, într-un celebru memoriu al său, l-a condus, pe cel care a descoperit-o, la deschiderea unui nou capitol de topologie, teoria mulţimilor analitice şi proiective

Funcţiile limbajului matematic



Limbajul matematic exploatează sinonimia sa infinită. Orice enunţ se poate reformula într-un mod echivalent. Demonstraţiile se bazează pe această parafrazare potenţial infinită a ipotezelor, proces care duce, după un număr finit de paşi, la concluzia dorită. În această activitate, sunt folosite deopotrivă relaţii anaforice şi cataforice. Este manifestă tendinţa de reducere a fenomenelor de omonimie, dar nu se poate ajunge la anihilarea lor totală. Caracterul esenţial metaforic al limbajului matematic provine în primul rând din procesele de generalizare. De exemplu, trecerea de la numere raţionale la cele iraţionale, în cazul de referinţă al evaluării lungimii diagonalei unui pătrat cu latura egală cu unitatea, s-a bazat pe căutarea unui număr care să se afle faţă de 2 într-o relaţie similară celeia în care se află n faţă de pătratul lui n. Procesul metaforic se referă aici nu la o entitate preexistentă, ci la una care se construieşte prin emergenţa procesului respectiv. Este deci vorba de metafore autoreferenţiale. Metafora declanşată de Pitagora, în legătură cu diagonala pătratului unitate, a avut nevoie de 2000 de ani pentru a conduce la conceptul de număr real şi, în cadrul acestuia, la conceptul de număr iraţional. Mai sunt apoi metaforele care sugerează o legătură cu lumea contingentă: frontieră, filtru, număr raţional, număr transcendent etc.
Metonimia ţine şi ea de natura intimă a matematicii. O problemă esenţială este citirea proprietăţilor unei mulţimi pe o parte cât mai restrânsă a ei. Cele mai multe numere reale sunt reprezentate printr-o parte finită a lor, deoarece nu cunoaştem reprezentarea lor esenţial infinită şi neperiodică. În afară de relaţia întreg-parte, este foarte importantă relaţia de contiguitate determinată de inferenţe de diverse tipuri: inducţii, deducţii şi abducţii.
Semantica limbajului matematic este, ca şi aceea a limbajului comun, de două feluri: aditivă (când semnificaţia întregii expresii se obţine prin concatenarea semnificaţiilor componentelor) şi integrativă (când semnificaţia întregii expresii este diferită de semnificaţia obţinută prin concatenarea semnificaţiilor componentelor).Un exemplu de al doilea tip este obţinut prin plasarea semnului integralei în faţa expresiei f(x)dx. In acest caz, dx nu mai înseamnă diferenţiala lui x iar alăturarea dintre f(x) şi dx nu are semnificaţia de produs. Dar notaţia se explică prin dorinţa păstrării analogiei cu sumele din care provine respectiva integrală, printr-un proces de trecere la limită.
Limbajul matematic realizează de multe ori un proces de optimizare semiotică, asemănător celui poetic. Este suficient să ne referim la cazul simplu al puterii a n-a a unui binom a+b. Putem exprima în cuvinte această putere pentru valori mici ale lui n, dar, de îndată ce valoarea lui n creşte, pierdem controlul. Simbolismul matematic ne salvează.

Componentele limbajului matematic



1) Limbajul natural (predominant în varianta limbii engleze);
2) Elemente ale limbajului natural, folosite ca simboluri artificiale (a, b, c, x, y, A, B, sin, dy/dx, π, Ώ, Γ, Δ, α, β, γ etc);
3) Simboluri, altele decât cele de la 2): 0, 1, 2, 3, …, simbolurile de disjunctie şi de conjuncţie logică, cele de reuniune, intersecţie şi incluziune relative la mulţimi, simbolul de apartenenţă al lui Peano, simbolul integralei etc.;
4) Expresii, relaţii, formule, ecuaţii etc. formate cu ajutorul entităţilor de la 2) şi 3);
5) Reprezentări pictoriale discrete (grafuri, matrici, diagrame etc);
6) Reprezentări pictoriale continue (curbe, suprafeţe etc);
7) Programe de calculator;
8) Metasisteme simbolice, cum ar fi limbajul programabil de printare TEX (după grecescul techné, asociat cu latinescul texere) şi cu derivatele sale, ca AMS.TEX şi LATEX, care, sub forma unor comenzi, reglementează tipărirea textelor matematice;
9) Componenta orală a matematicii.

Câteva observaţii sunt necesare. Componenta semnalată la 1) este cea mai importantă, deoarece limbajul natural direcţionează întregul comportament al limbajului matematic. Gândim prin intermediul limbajului natural, chiar atunci când ne prevalăm de celelalte componente. Se preconizează, ca o medie, un echilibru prin care jumătate dintr-un text matematic rămâne scris în limbaj natural. Nu trebuie confundat limbajul matematic cu limbajul axiomatic deductiv sau cu cel formalizat. Matematica nu este şi (ştim acum) nu poate fi în întregime formalizată. Este uimitor felul în care toate aceste imperative de igienă a educaţiei sunt ignorate în matematica şcolară, in diferitele ei variante: manuale, predare la clasă, reviste pentru elevi, examene, concursuri. Reducem educaţia la aspectul ei sintactic, ignorând dimensiunea ei semantică. Dar semnificaţiile se exprimă în cuvinte, pentru a le înţelege şi exprima trebuie să construieşti un discurs. Este exact ceea ce şcoala nu reuşeşte. Acest eşec se transmite de la şcoală la universitate şi de la universitate în cercetare; modul în care ideile matematice sunt asimilate şi utilizate este profund afectat de această înţelegere fragmentară a lor.
Prezenţa componentelor 2), 3) şi 4) arată că limbajul matematic are o structură mixtă, fiind alcătuit dintr-o componentă naturală şi alta artificială. Ştim acum că în componenta artificială se regăsesc toate funcţiile componentei naturale: metaforă, metonimie, ambiguitate, relaţii de coordonare şi de subordonare etc. Ca urmare a prezenţei componentelor 4), 5) şi 6), limbajul matematic devine bidimensional şi, uneori, tridimensional. O liniarizare forţată răpeşte matematicii din forţa sa euristică şi sugestivă. Să mai observăm că limbajul matematic se prevalează atât de reprezentări discrete cât şi de reprezentări continue. Fiind un limbaj scris, el este esenţial vizual.
Componenta 9) are în vedere prezentarea orală a matematicii, care are alte reguli decât cea scrisă; nu dezvoltarea detaliilor, ci sublinierea ideilor, a contextului cultural-istoric, a cotiturilor periculoase. Prezentarea orală atenuează liniaritatea discursului scris, prin distribuirea mai nuanţată a accentelor. Dar, după cum observa Dan Barbilian, un rezultat matematic nu se poate valida decât pe baza formei sale scrise.

În intimitatea limbajului matematic



Există realmente un limbaj matematic, sau este vorba aici de o simplă metaforă? Când se pretinde că Jean-Jacques Rousseau s-a servit de limbajul matematic pentru a explica teoria sa asupra guvernării (Marcel Françon, “Le langage mathématique de Jean-Jacques Rousseau”, Isis 40 (1949), 341-344), despre ce anume este vorba? În primul capitol din cartea a treia a Contractului Social, Rousseau îşi propune să studieze diferite tipuri de relaţii şi forţe intermediare implicate în actul guvernării. Pentru a se face mai clar şi mai sugestiv, recurge la o utilizare metaforică a rapoartelor şi proporţiilor din algebra elementară. O metaforă de acelaşi tip avea să fie folosită în urmă cu vreo 30 de ani de Samuel Huntington, într-o carte a sa de ştiinţe politice. Sintagma limbaj matematic este, de cele mai multe ori, folosită la modul metaforic, pentru a numi o utilizare locală, pasajeră, a unei analogii cu un termen sau cu un simbol matematic; alteori, dar la fel de abuziv, se desemnează prin această sintagmă folosirea locală a unei anumite formule, într-un text care, în cea mai mare parte a sa, nu are nimic comun cu matematica.
Dar nici termenul de limbaj luat singur nu este mai puţin echivoc. Predomină utilizările sale metaforice sau echivalarea sa cu un sistem arbitrar de semne. In consecinţă, expresii ca limbajul florilor sau limbajul culorilor rămân fără acoperire, dar acceptate ca metafore. În ce condiţii devine limbaj un anume sistem de semne, iată o problemă foarte controversată, pe care nu o putem discuta aici. Cercetări mai aprofundate au condus la ipoteza general acceptată, conform căreia sistemul de semne folosit în matematică are cele mai multe trăsături ale unui limbaj. Ca orice sistem de semne, un limbaj este dotat cu trei niveluri”: sintactic, semantic şi pragmatic. Limbajelor li se mai cere, de obicei, să aibă o structură secvenţială. Această condiţie nu prea este îndeplinită de limbajul matematic, în a cărui ţesătură intervine, după cum a observat Josh Ard, o dinamică de tipul montajului vertical la care se referea Eisenstein în legătură cu filmul. Dar să vedem din ce anume este alcătuit limbajul matematic.

Matematica, de la unealtă la limbaj



Fizicienii teoreticieni obişnuiesc de multă vreme să considere funcţia de limbaj a matematicii, cu referire la capacitatea acesteia de a da o expresie concentrată şi riguroasă anumitor relaţii. Limbajul matematic este, de la Newton şi Galilei încoace, modul de a fi al unor vaste capitole ale fizicii. Dezvoltarea teoriei ecuaţiilor diferenţiale s-a aflat într-un metabolism permanent cu dezvoltarea fizicii. Ecuaţiile diferenţiale şi cele integrale au devenit modul predominat de exprimare a legilor fizicii. În secolul al XX-lea, ca urmare a dezvoltării teoriei relativităţii şi a mecanicii cuantice, în “jocul” dintre fizică şi matematică mingea este mereu şi mereu pe terenul matematicii; limbajul matematic nu mai este simţit aici ca rezultat al unei operaţii de traducere a unor situaţii nematematice, rezultând din observaţie şi experiment, ci devine pur şi simplu modul de existenţă al fenomenelor fizice.
Apropierea dintre economie şi matematică are o istorie de câteva secole. În secolul al XX-lea şi mai ales în a doua jumătate a acestuia, limbajul matematic a devenit modalitatea predominantă de exprimare a fenomenelor economice, fapt oglindit de un mare număr de premii Nobel în economie acordate unor lucrări foarte matematizate. Acest fapt nu este străin de apariţia şi dezvoltarea teoriei jocurilor de strategie, având ca protagonişti pe John von Neumann, Oskar Morgenstern şi John Nash.
Un alt domeniu în care matematica a pătruns în mod masiv este biologia. În prima jumătate a secolului al XX-lea a avut loc o utilizare mai degrabă sub formă de unealtă a ecuaţiilor diferenţiale, a teoriei probabilităţilor şi statisticii matematice. În a doua jumătate a secolului trecut, studiul sistemului nervos şi al eredităţii a beneficiat de o pătrundere masivă a limbajului matematic, rezultat din dezvoltarea combinată a matematicii, biologiei şi informaticii.
De vreo jumătate de secol, la ingineria energiei, bazată în primul rând pe matematici continue, s-a adăugat ingineria informaţiei, care face apel în primul rând la matematici discrete. Graniţa dintre ştiinţă şi inginerie devine tot mai problematică. De la teza de doctorat a lui Shannon, de la sfârşitul anilor ’30 ai secolului trecut, logica matematică şi ingineria intră în conexiune directă iar limbajul matematic a devenit esenţial pentru disciplinele informaţiei.


Matematica: o unealtă utilă uneori




Prin anii 1950-1951, eram şi asistent la cursuri de matematică de la Politehnica bucureşteană, la Electrotehnică, la Energetică şi la Chimie industrială. Într-o zi, sunt invitat de Profesorul Spacu, decan la Chimie, care-mi atrage atenţia că seminarul meu este prea teoretic. “Din matematică, chimia nu are nevoie decât de puţin peste regula de trei”. Cursul la care făceam seminarul era ţinut de Profesorul Racliş, care mă pusese în gardă chiar de la prima întâlnire: “Să nu cumva să încerci să faci demonstraţii, că eşti un om pierdut!” L-am urmărit cu atenţie; enunţurile erau validate prin expresii de tipul “Se vede pe figură că…” Figurile erau executate cu crete colorate şi impresionau prin acurateţe. Accentul cădea pe procedee, descompuse în paşi caligrafiaţi şi numerotaţi cu grijă pe tablă. Cred că a fost unul dintre cele mai apreciate cursuri. Nu m-am putut încadra în această conduită şi am părăsit Politehnica, pentru a mă dedica în întregime activităţii mele la Universitatea din Bucureşti, ca asistent al Profesorului Miron Nicolescu. De atunci, am urmărit cu atenţie statutul matematicii în învăţământul ingineresc. In urmă cu vreo 20 de ani, în cadrul unor dezbateri pe această temă, se cristalizaseră două puncte de vedere. Pentru unii, ca Profesorul Dorin Pavel, gândirea inginerească nu se formează prin matematică iar rolul acordat matematicii la admiterea în Politehnică şi pe parcursul studiilor este exagerat. Nici Profesorul D. Drimer nu părea a fi departe de acest punct de vedere. Pentru ei, matematica în inginerie era o simplă unealtă, utilă uneori. Nimic mai mult. Cu o altă ocazie, şi Profesorul Remus Răduleţ exprimase o opinie similară. Pentru alţii, ca Profesorul Radu Voinea şi Profesorul Alexandru Balaban, matematica este pentru inginer şi un mod de gândire exemplar iar prezenţa matematicii la admiterea în Politehnică şi pe parcursul studiilor trebuie întărită.

Suntem suma reacţiilor celorlalţi



Trecerea de la studenţie la predare şi cercetare a însemnat, în bună măsură, trecerea de la matematica din cursuri şi manuale la aceea din monografii, tratate şi, mai ales, reviste de specialitate. Matematica vie, aceea care te introduce în laboratorul de lucru al matematicianului, este numai aceea din reviste (cele de cercetare, nu de popularizare). În revistele de dată recentă, găseşti rezultatul celor mai proaspete frământări şi căutări ale cercetătorilor. Îmi aduc aminte emoţia cu care intram, în anii ’50 şi ’60 ai secolului trecut, în Biblioteca de Matematică a Universităţii din Bucureşti sau în aceea a Institutului de Matematică al Academiei, având mereu ca primă întrebare: Ce noutăţi aţi mai primit? Dar şi plăcerea de a te cufunda în lectura celor care, într-un trecut mai mult sau mai puţin îndepărtat, au fost chinuiţi de întrebări şi curiozităţi asemănătoare celor de azi, ale tale, nu este de subapreciat. Păstrez şi acum zeci de caiete în care copiam fragmente din articole care mă interesau; era o vreme în care, nu numai că nu exista încă internetul, dar nici xeroxul nu apăruse iar procedee mai rudimentare de copiat erau şi ele un lux. Aşa mi s-a cristalizat caracterul de ştafetă al cercetării. Porneşti de la probleme, idei şi rezultate ale altora, încerci să faci un pas mai departe şi, dacă reuşeşti sau numai crezi că ai reuşit, încerci să transmiţi altora mesajul tău. Aştepţi cu înfrigurare reacţia lor, pentru a testa în acest fel coerenţa, corectitudinea şi interesul mesajului respectiv şi pentru a vedea în ce fel este, la rândul său, dus mai departe. Aşa cum un părinte este interesat să vadă cum evoluează propria-i odraslă, ca autor al unei lucrări doreşti să urmăreşti ecoul ei. Nu cumva tocmai în aceste reacţii ale altora se află o sursă preţioasă pentru preocupările tale ulterioare? Nu cumva tocmai în acest dialog generalizat se află esenţa activităţii de cercetare, a creaţiei, în general? Bănuind că răspunsul corect la aceste întrebări este cel afirmativ, m-a preocupat, de la primii paşi în cercetare, impactul activităţii mele. În măsura în care l-am putut urmări (într-o vreme în care comunicarea cu lumea era dificilă), l-am înregistrat cu grijă iar cele peste o sută de caiete care s-au acumulat în această privinţă fac parte organică din biografia mea intelectuală. Acum, internetul facilitează considerabil urmărirea acestui aspect. Biografia noastră în domeniul creaţiei culturale a devenit în mare măsură publică.

Interdisciplinaritatea

ARGUMENT Interdisciplinaritatea apare ca necesitate a depasirii granitelor artificiale intre diferite domenii. Argumentul care pledeaza pentru interdisciplinaritate consta in aceea ca ofera o imagine integrata a lucrurilor care sunt, de regula, analizate separat.

Prin interdisiciplinaritate se creează:
·         Acoperirea rupturilor dintre discipline, eliminarea izolarii şi lipsei corelaţiilor intre continuturile diverselor discipline.
·         Construirea, prin educatie, a unor structuri mentale dinamice, flexibile si responsive, capabile sa sprijine deciziile cele mai potrivite.
·         Rezolvarea de probleme, care poate fi considerata cea mai importanta forta motrice a integrarii, datorita relevantei sale practice. Problemele cu care ne confruntam in viata profesionala, sociala sau personala impun judecati si decizii care nu sunt, de regula, limitate in jaloanele disciplinare. Aceste probleme au un caracter integrat, iar rezolvarea lor impune corelatii rapide si semnificative.
Avantajele invatarii la nivel interdisciplinar:
·         Incurajarea colaborarii directe si a schimbului intre specialisti care provin din discipline diferite, contribuind la constituirea unui caracter deschis al cercetarii, al practicilor sociale si al curriculumului scolar
·         Centrarea procesului de instruire pe invatare, pe elev, dezvoltarea pedagogiilor active , participative de lucru la clasa, lucrul pe centre de interes, invatarea tematica sau conceptuala, invatarea pe baza de proiecte sau de probleme, invatarea prin cooperare.
·         Crearea unor structuri mentale si actional - comportamentale flexibile si integrate, cu potential de transfer si adaptare.
·         Invatare durabila si cu sens, prin interactiuni permanente intre discipline, prin relevanta explicita a competentelor formate in raport cu nevoile personale, sociale si profesionale.
Decentrarea teoriei si practicii pedagogice de pe ideea de disciplina si a decompartimentarii achizitiilor invatarii in favoarea interactiunilor si corelatiilor

Interdisciplinaritatea – baza unui învățământ contemporan de calitate


MOTTO “CEL MAI PUTERNIC ARGUMENT PENTRU INTERDISCIPLINARITATE ESTE CHIAR FAPTUL CĂ
VIAŢA NU ESTE ÎMPĂRŢITĂ PE DISCIPLINE” J. MOFFETT

„Disciplinaritatea, pluridisciplinaritatea, interdisciplinaritatea și transdisciplinaritatea sunt cele patru săgeți ale unuia și aceluiași arc: cel al cunoașterii” Basarab Nicolescu în „Transdisciplinaritatea. Manifest”

INVATAREA BAZATA PE INVESTIGATIE


5 OCTOMBRIE ZIUA MONDIALA A EDUCATIEI

Imagini pentru imagini dedicate zilei de 5 octombrie

Abordare interdisciplinara