duminică, 25 august 2013

Simboluri matematice de bază

Simbol
Seminificație
Explicație Exemple
Se citește
Categorie
=
egalitate x = y înseamnă x și y reprezintă același lucru sau au aceeași valoare. 1 + 1 = 2
este egal cu
oriunde


<>
neegalitate xy înseamnă că x și y nu reprezintă același lucru sau nu au aceeași valoare. 1 ≠ 2
nu este egal cu
diferit de
oriunde
<

>



strictă inegalitate x < y înseamnă că x este mai mic decât y.

x > y înseamnă că x este mai mare decât y.

x ≪y înseamnă că x mult mai mic decât y.

x ≫ y înseamnă că x mult mai mare decât y.
3 < 4
5 > 4
0,003 ≪1000000
este mai mic decât,
este mai mare decât,
este mult mai mic decât,
este mult mai mare decât
teoria ordonării


inegalitate x ≤ y înseamnă că x este mai mic sau egal cu y.

x ≥ y înseamnă că x este mai mare sau egal cu y.
3 ≤ 4 și 5 ≤ 5
5 ≥ 4 and 5 ≥ 5
este mai mic sau egal cu,
este mai mare sau egal cu
teoria ordonării
proporționalitate yx înseamnă că y = kx pentru o constantă k. dacă y = 2x, atunci yx
este proporțional cu
oriunde
+
adunare 4 + 6 înseamnă suma lui 4 și 6 2 + 7 = 9
plus
aritmetică
reuniune disjunctă A1 + A2 înseamnă reuniunea disjunctă a mulțimilor A1 și A2. A1={1,2,3,4} ∧ A2={2,4,5,7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)}
reuniunea disjunctă între
teoria mulțimilor
diferență 9 − 4 înseamnă diferența dintre 9 și 4 8 − 3 = 5
minus
aritmetică
opusul −3 înseamnă opusul lui 3. −(−5) = 5
negativ ; minus
aritmetică
complementul unei mulțimi A − B înseamnă mulțimea care conține toate elementele din A care nu sunt în B. {1,2,4} − {1,3,4}  =  {2}
minus; fără
teoria mulțimilor
×
produs 3 × 4 înseamnă produsul lui 3 și 4. 7 × 8 = 56
ori,
înmulțit cu
aritmetică
produs cartezian X×Y înseamnă mulțimea tuturor perechilor ordonate cu primul element din X și al doilea element din Y. {1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
produsul cartezian între; produsul direct
teoria mulțimilor
produs vectorial u × v înseamnă produsul vectorial al vectorilor u și v (1,2,5) × (3,4,−1) =
(−22, 16, − 2)
produs vectorial cu
algebră vectorială
÷

/
împărțire 6 ÷ 3 sau 6/3 înseamnă împărțirea lui 6 la 3 2 ÷ 4 = 0,5

12 / 4 = 3
împărțit la
aritmetică
rădăcină pătrată x înseamnă numărul pozitiv al cărui pătrat este x. √4 = 2
rădăcina pătrată a lui; radicalul de ordin doi din
numere reale
rădăcina pătrată complexă dacă z = r exp(iφ) este reprezentat în coordonate polare, atunci √z = √r exp(iφ/2). √(-1) = i
rădăcina pătrată complexă a lui
numere complexe
| |
valoare absolută |x| înseamnă distanța pe axa reală (sau în planul complex) dintre x și zero. |3| = 3, |-5| = |5|
|i| = 1, |3+4i| = 5
valoarea absolută a lui; modul din
numere
!
factorial n! este produsul 1×2×...×n. 4! = 1 × 2 × 3 × 4 = 24
factorial
combinatorică
~
distribuție de probabilitate X ~ D, înseamnă că variabila aleatoare X are distribuția de probabilitate D. X ~ N(0,1), distribuția normală standard
are distribuția
statistică




implicație AB înseamnă că dacă A este adevărată, atunci și B este adevărată; în caz că A este falsă, nu se poate spune nimic despre B.

→ poate însemna același lucru ca și ⇒ sau poate avea sensul pentru funcții descris mai jos.

⊃ poate însemna același lucru ca și ⇒ sau poate avea sensul de supramulțime descris mai jos.
x = 2  ⇒  x2 = 4 este adevărată, dar x2 = 4   ⇒  x = 2 este în general falsă (deoarece x poate fi −2, dacă domeniul studiat permite).
implică; dacă .. atunci
logică propozițională


echivalență A ⇔ B înseamnă că A și B au aceleași valori de adevăr. x + 5 = y +2  ⇔  x + 3 = y
dacă și numai dacă (dnd); echivalent cu
logică propozițională
¬

˜
negație logică Propoziția ¬A este adevărată dacă și numai dacă A este falsă.

O bară oblică ce taie un operator reprezintă același lucru ca și "¬" scris în față.
¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x = y)
non
logică propozițională
conjuncție logică sau infimum într-o latice Propoziția AB este adevărată dacă A și B sunt ambele adevărate; altfel este falsă. n < 4  ∧  n >2  ⇔  n = 3 dacă n este număr natural.
și
logică propozițională, teoria laticelor
disjuncție logică sau supremum într-o latice Propoziția AB este adevărată dacă A sau B (sau ambele) sunt adevărate; altfel este falsă. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 dacă n este număr natural.
sau
logică propozițională, teoria laticelor



sau exclusiv Afirmația AB este adevărată dacă fie A, fie B, dar nu ambele, este adevărată. AB înseamnă același lucru. A) ⊕ A este mereu adevărată, AA este mereu falsă.
xor
logică propozițională, algebră booleană
cuantificator universal ∀ x: P(x) înseamnă P(x) este adevărată pentru toți x din domeniu. ∀ n ∈ N: n2 ≥ n.
oricare; pentru fiecare
logica predicatelor
cuantificator existențial ∃ x: P(x) înseamnă că există cel puțin un x astfel încât P(x) este adevărată. ∃ n ∈ N: n este par.
există
logica predicatelor
∃!
cuantificator de unicitate ∃! x: P(x) înseamnă că există exact un x astfel încât P(x) este adevărată. ∃! n ∈ N: n + 5 = 2n.
există un(o) unic(ă)
există și e unic(ă)
logica predicatelor
:=



:⇔
definiție x := y sau x ≡ y înseamnă că x este definit ca un alt nume pentru y (de observat că ≡ poate avea și alte sensuri, precum congruență).

P :⇔ Q înseamnă că P este definit astfel încât, din punct de vedere logic, este echivalent cu Q.
cosh x := (1/2)(exp x + exp (−x))

A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
se definește ca
oriunde
{ , }
acolade de mulțime {a,b,c}înseamnă mulțimea formată din a, b și c. N = {0,1,2,...}
mulțimea
teoria mulțimilor
{ : }

{ | }
notație de construcție a unei mulțimi {x : P(x)} sau {x | P(x)} înseamnă mulțimea acelor x pentru care P(x) este adevărată. {n ∈ N : n2 < 20} = {0,1,2,3,4}
mulțimea elementelor cu proprietatea că
teoria mulțimilor

\empty

{}
mulțimea vidă \empty înseamnă mulțimea cu nici un element. {} este o notație echivalentă. {n ∈ N : 1 < n2 < 4} = \empty
mulțimea vidă
teoria mulțimilor


\notin
apartenență a ∈ S înseamnă că a este un element al mulțimii S; a \notin S înseamnă că a nu este un element al mulțimii S. (1/2)−1 ∈ N

2−1 \notin N
aparține lui, este inclus în;
nu aparține lui, nu este inclus în
oriunde, teoria mulțimilor


submulțime (submulțime) A ⊆ B înseamnă că fiecare element din A este și element al lui B.

(submulțime proprie) A ⊂ B înseamnă că A ⊆ B dar A ≠ B.
A ∩ BA; Q ⊂ R
este inclusă în; este o submulțime pentru; este submulțime a lui
teoria mulțimilor


superset A ⊇ B înseamnă că fiecare element din B este și element al lui A.

A ⊃ B înseamnă că A ⊇ B dar A ≠ B. A ⊇ B este echivalent cu B ⊆ A, A ⊃ B este echivalent cu B ⊂ A.
A ∪ BB; R ⊃ Q
include; este o supramulțime pentru; este supramulțime a lui
teoria mulțimilor
reuniune Reuniune exclusivă (vezi și diferență simetrică): A ∪ B înseamnă mulțimea care conține toate elementele lui A, și toate elementele lui B, dar nu și elementele lor comune.
"A sau B, dar nu amândouă".

Reuniune inclusivă: A ∪ B înseamnă mulțimea care conține toate elementele lui A, și toate elementele lui B.
"A sau B sau amândouă".
A ⊆ B  ⇔  A ∪ B = B

A ∪ B = {x | x ∈ Ax ∈ B)}
reuniunea între
teoria mulțimilor
intersecție de mulțimi A ∩ B înseamnă mulțimea ce conține elementele comune din A și B {x ∈ R : x2 = 1} ∩ ℕ = {1}
intersecția dintre
teoria mulțimilor
\
set-theoretic complement A \ B înseamnă mulțimea ce conține elementele pe care A le are în plus față de B {1,2,3,4} \ {3,4,5,6} = {1,2}
diferența
teoria mulțimilor
( )
valoarea funcției f(x) înseamnă 'f de x', sau valoarea lui f în elementul x. Dacă f(x) := x2, atunci f(3) = 32 = 9.
de
teoria mulțimilor
modificatori de precedență Se efectuează întâi operațiile din paranteze. (8/4)/2 = 2/2 = 1, dar 8/(4/2) = 8/2 = 4.
paranteze
oriunde
f:XY
functie săgeată fX → Y înseamnă că funcția f transportă elementele lui X în cele din Y. Let fZ → N be defined by f(x) := x2.
de ... la
teoria mulțimilor
o
funcția compunere fog e functia, fiind (fog)(x) = f(g(x)). if f(x) := 2x, și g(x) := x + 3, apoi (fog)(x) = 2(x + 3).
compus cu
teoria mulțimilor

N

numere naturale N înseamnă {0,1,2,3,...}, dar a se vedea și numere naturale pentru o altă convenție. {|a| : a ∈ Z} = N
N
număr

Z

\mathbb{Z}
numere întregi Z înseamnă {...,−3,−2,−1,0,1,2,3,...}. {a : |a| ∈ N} = Z
Z
număr

Q

numere raționale Q înseamnă {p/q : p,q ∈ Z, q ≠ 0}. 3.14 ∈ Q

π ∉ Q
Q
număr

R

numere reale R înseamnă setul de numere reale. π ∈ R

√(−1) ∉ R
R
număr

C

numere complexe C înseamnă {a + bi : a,b ∈ R}. i = √(−1) ∈ C
C
număr
infinitate ∞ este un element al mulțimii reale extinse și este mai mare ca orice alt număr real, fiin deseori întalnit în limite matematice. limx→0 1/|x| = ∞
infinitate
număr
\pi
pi π este raportul dintre lungimea cercului și diametrul său. Valorea lui este 3.1415.... A = πr² este aria unui cerc cu raza r
pi
geometrie euclidiană
|| ||
norma ||x|| este norma unui element x din spațiul vectorial normat. ||x+y|| ≤ ||x|| + ||y||
norma lui; lungimea lui
algebră liniară
Însumare k=1n ak înseamnă a1 + a2 + ... + an. k=14 k2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30
sumă peste ... de ... la ... din
oriunde
Înmulțire k=1n ak înseamnă a1a2···an. k=14 (k + 2) = (1  + 2)(2 + 2)(3 + 2)(4 + 2) = 3 × 4 × 5 × 6 = 360
produs peste ... de ... la ... din
oriunde
Produs cartezian i=0nYi înseamnă setul tuturor (n+1)-uplurilor (y0,...,yn). n=13R = Rn
produsul cartezian dintre; produsul direct dintre
algebră
'
Derivată f '(x) este derivata funcției f în punctul x,ex: tangenta la graficul lui f în x. Dacă f(x) := x2, atuncif '(x) = 2x
… prim; derivata lui …
analiză matematică
Integrala nedefinită sau antiderivată ∫ f(x) dx înseamnă o funcție a cărui derivată e f. x2 dx = x3/3 + C
integrală nedefinită din …;
calculus
Integrala definită ab f(x) dx înseamnă aria cu semn dintre axa x și grficul funcției lui f între x = a și x = b. 0b x2  dx = b3/3;
integrala de la ... până la ....
analiză matematică
gradient f (x1, …, xn) este vectorul derivatelor parțiale (df / dx1, …, df / dxn). Dacă f (x,y,z) := 3xy + z², atunci ∇f = (3y, 3x, 2z)
Nabla, gradient din
analiză matematică
derivată parțială Cu f (x1, …, xn), ∂f/∂xi este derivata lui f în funcție de xi, celelalte variabile păstrându-se constante. dacă f(x,y) := x2y, atunci ∂f/∂x = 2xy
derivată parțială din
calculus
frontiera M înseamnă frontiera mulțimii M ∂{x : ||x|| ≤ 2} = {x : ||x|| = 2}
frontiera
topologie
perpendicular xy înseamnă x este perpendicular pe y; sau mai general x e ortogonal pe y. Dacă lm și mn atunci l || n.
e perpendicular pe
geometrie
element minim (cel mai mic) x = ⊥ înseamnă că x este cel mai mic element. x : x ∧ ⊥ = ⊥
Elementul minimt
lattice theory
entailment AB means the sentence A entails the sentence B, that is every model in which A is true, B is also true. AA ∨ ¬A
entails
model theory
inference xy means y is derived from x. AB ⊢ ¬B → ¬A
infers or is derived from
propositional logic, predicate logic
normal subgroup NG means that N is a normal subgroup of group G. Z(G) ◅ G
is a normal subgroup of
group theory
/
quotient group G/H means the quotient of group G modulo its subgroup H. {0, a, 2a, b, b+a, b+2a} / {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}}
mod
teoria grupurilor
izomorfism GH înseamnă că grupul G e izomorf cu grupul H Q / {1, −1} ≈ V,
unde Q este quaternion group și V este grupul Klein de 4 elemente.
e izomorf cu
teoria grupurilor
egal aproximativ xy înseamnă x este aproximativ egal cu y π ≈ 3.14159
este aproximativ egal cu
oriunde
〈,〉

( | )

< , >

·

:
produs scalar x,y〉 înseamnă produsul scalar al lui x și y.
În cadrul spațiilor euclidiene se obișnuește de a nota produsul scalar atît prin (x,y) cît și prin x·y.
Pentru matrice se poate utiliza semnul :.
În spațiul euclidian 2 produsul scalar al vectorilor x = (2, 3) și y = (−1, 5) este:
〈x, y〉 = 2 × −1 + 3 × 5 = 13

A:B = \sum_{i,j} A_{ij}B_{ij}
produs scalar
algebra liniară
Produs tensorial VU înseamnă produsul tensorial dintre V și U. {1, 2, 3, 4} ⊗ {1,1,2} =
{{1, 2, 3, 4}, {1, 2, 3, 4}, {2, 4, 6, 8}}
produs tensorial
algebră liniară

Niciun comentariu:

Trimiteți un comentariu